Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38659775

RESUMO

Alcohol use disorder (AUD) is a chronic, relapsing disease, highly comorbid with anxiety and depression. The bed nucleus of the stria terminalis (BNST), and Crh + neurons in this region are thought to play a key role in chronic ethanol-induced increases in volitional ethanol intake. This role has been hypothesized to be driven by emergent BNST-dependent negative affective behaviors. Indeed, we report here that in female mice undergoing a home cage chronic drinking forced abstinence model (CDFA), excitatory transmission undergoes time-dependent upregulation in BNST Crh + cells. Excitatory NMDA receptors (NMDARs) are a major target of ethanol, and chronic ethanol exposure has been shown to regulate NMDAR function and expression. GluN2D subunit-containing NMDARs have emerged as a target of interest due to their limited distribution and potential roles in affective behavior. We find that knockdown of dorsal BNST (dBNST) GluN2D expression significantly decreases ethanol intake in female, but not male, mice. While BNST Grin2b expression was significantly increased in protracted abstinence following CDFA, no differences in Grin2d expression were observed in dBNST or specifically in dBNST Crh + neurons. Finally, to determine the impact of GluN2D expression on negative affective behaviors, open field, elevated zero maze, and forced swim tasks were used to measure anxiety- and depressive-like behaviors in constitutive and conditional BNST GluN2D knockout mice. Surprisingly, we find that deletion of GluN2D fails to alter negative affect in ethanol-naïve female mice. Together, these data suggest a role for BNST GluN2D-containing NMDARs in ethanol drinking behaviors but not abstinence from ethanol, highlighting potential sex differences and behavioral specificity in the context of AUD behaviors. Overall, these data further suggest roles for BNST synaptic signaling in volitional ethanol intake that are partially independent of actions on affective behavior.

2.
Neuropsychopharmacology ; 48(7): 1031-1041, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36941364

RESUMO

The bed nucleus of the stria terminalis (BNST) is a critical mediator of stress responses and anxiety-like behaviors. Neurons expressing protein kinase C delta (BNSTPKCδ) are an abundant but understudied subpopulation implicated in inhibiting feeding, but which have conflicting reports about their role in anxiety-like behaviors. We have previously shown that expression of PKCδ is dynamically regulated by stress and that BNSTPKCδ cells are recruited during bouts of active stress coping. Here, we first show that in vivo activation of this population is mildly aversive. This aversion was insensitive to prior restraint stress exposure. Further investigation revealed that unlike other BNST subpopulations, BNSTPKCδ cells do not exhibit increased cfos expression following restraint stress. Ex vivo current clamp recordings also indicate they are resistant to firing. To elucidate their afferent control, we next used rabies tracing with whole-brain imaging and channelrhodopsin-assisted circuit mapping, finding that BNSTPKCδ cells receive abundant input from affective, arousal, and sensory regions including the basolateral amygdala (BLA) paraventricular thalamus (PVT) and central amygdala PKCδ-expressing cells (CeAPKCδ). Given these findings, we used in vivo optogenetics and fiber photometry to further examine BNSTPKCδ cells in the context of stress and anxiety-like behavior. We found that BNSTPKCδ cell activity is associated with increased anxiety-like behavior in the elevated plus maze, increases following footshock, and unlike other BNST subpopulations, does not desensitize to repeated stress exposure. Taken together, we propose a model in which BNSTPKCδ cells may serve as threat detectors, integrating exteroceptive and interoceptive information to inform stress coping behaviors.


Assuntos
Núcleo Central da Amígdala , Núcleos Septais , Núcleos Septais/metabolismo , Ansiedade , Núcleo Central da Amígdala/metabolismo , Neurônios/fisiologia , Afeto
3.
Neuropsychopharmacology ; 48(8): 1133-1143, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36085168

RESUMO

α2a-adrenergic receptor (α2a-AR) agonists are candidate substance use disorder therapeutics due to their ability to recruit noradrenergic autoreceptors to dampen stress system engagement. However, we recently found that postsynaptic α2a-ARs are required for stress-induced reinstatement of cocaine-conditioned behavior. Understanding the ensembles recruited by these postsynaptic receptors (heteroceptors) is necessary to understand noradrenergic circuit control. We utilized a variety of approaches in FosTRAP (Targeted Recombination in Active Populations) mice to define an ensemble of cells activated by the α2a-AR partial agonist guanfacine ("Guansembles") in the bed nucleus of the stria terminalis (BST/BNST), a region key to stress-induced reinstatement of drug seeking. We define BNST "Guansembles" and show they differ from restraint stress-activated cells. Guanfacine produced inhibition of cAMP-dependent signaling in Guansembles, while chronic restraint stress increased cAMP-dependent signaling. Guanfacine both excited and inhibited aspects of Guansemble neuronal activity. Further, while some stressors produced overall reductions in Guansemble activity, active coping events during restraint stress and exposure to unexpected shocks were both associated with Guansemble recruitment. Using viral tracing, we define a BNST Guansemble afferent network that includes regions involved in the interplay of stress and homeostatic functions. Finally, we show that activation of Guansembles produces alterations in behavior on the elevated plus maze consistent with task-specific anxiety-like behavior. Overall, we define a population of BNST neurons recruited by α2a-AR signaling that opposes the behavioral action of canonical autoreceptor α2a-AR populations and which are differentially recruited by distinct stressors. Moreover, we demonstrate stressor-specific physiological responses in a specific neuronal population.


Assuntos
Núcleos Septais , Transtornos Relacionados ao Uso de Substâncias , Camundongos , Animais , Guanfacina/farmacologia , Norepinefrina/farmacologia , Neurônios , Transdução de Sinais
4.
J Comp Neurol ; 530(16): 2835-2851, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35770983

RESUMO

The central melanocortin system is fundamentally important for controlling food intake and energy homeostasis. Melanocortin-3 receptor (MC3R) is one of two major receptors of the melanocortin system found in the brain. In contrast to the well-characterized melanocortin-4 receptor (MC4R), little is known regarding the organization of MC3R-expressing neural circuits. To increase our understanding of the intrinsic organization of MC3R neural circuits, identify specific differences between males and females, and gain a neural systems level perspective of this circuitry, we conducted a brain-wide mapping of neurons labeled for MC3R and characterized the distribution of their projections. Analysis revealed MC3R neuronal and terminal labeling in multiple brain regions that control a diverse range of physiological functions and behavioral processes. Notably, dense labeling was observed in the hypothalamus, as well as areas that share considerable connections with the hypothalamus, including the cortex, amygdala, thalamus, and brainstem. Additionally, MC3R neuronal labeling was sexually dimorphic in several areas, including the anteroventral periventricular area, arcuate nucleus, principal nucleus of the bed nucleus of the stria terminalis, and ventral premammillary region. Altogether, anatomical evidence reported here suggests that MC3R has the potential to influence several different classes of motivated behavior that are essential for survival, including ingestive, reproductive, defensive, and arousal behaviors, and is likely to modulate these behaviors differently in males and females.


Assuntos
Receptor Tipo 3 de Melanocortina , Caracteres Sexuais , Animais , Encéfalo/metabolismo , Feminino , Hipotálamo/metabolismo , Masculino , Melanocortinas , Camundongos , Receptor Tipo 3 de Melanocortina/genética , Receptor Tipo 3 de Melanocortina/metabolismo
5.
Biol Reprod ; 105(4): 1056-1067, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34037695

RESUMO

Mechanisms in the brain controlling secretion of gonadotropin hormones in pigs, particularly luteinizing hormone (LH), are poorly understood. Kisspeptin is a potent LH stimulant that is essential for fertility in many species, including pigs. Neurokinin B (NKB) acting through neurokinin 3 receptor (NK3R) is involved in kisspeptin-stimulated LH release, but organization of NKB and NK3R within the porcine hypothalamus is unknown. Hypothalamic tissue from ovariectomized (OVX) gilts was used to determine the distribution of immunoreactive kisspeptin, NKB, and NK3R cells in the arcuate nucleus (ARC). Almost all kisspeptin neurons coexpressed NKB in the porcine ARC. Immunostaining for NK3R was distributed throughout the preoptic area (POA) and in several hypothalamic areas including the periventricular and retrochiasmatic areas but was not detected within the ARC. There was no colocalization of NK3R with gonadotropin-releasing hormone (GnRH), but NK3R-positive fibers in the POA were in close apposition to GnRH neurons. Treating OVX gilts with the progestin altrenogest decreased LH pulse frequency and reduced mean circulating concentrations of LH compared with OVX control gilts (P < 0.01), but the number of kisspeptin and NKB cells in the ARC did not differ between treatments. The neuroanatomical arrangement of kisspeptin, NKB, and NK3R within the porcine hypothalamus confirms they are positioned to stimulate GnRH and LH secretion in gilts, though differences with other species exist. Altrenogest suppression of LH secretion in the OVX gilt does not appear to involve decreased peptide expression of kisspeptin or NKB.


Assuntos
Hipotálamo/metabolismo , Kisspeptinas/genética , Neurocinina B/genética , Progestinas/farmacologia , Receptores da Neurocinina-3/genética , Sus scrofa/genética , Acetato de Trembolona/análogos & derivados , Animais , Feminino , Perfilação da Expressão Gênica/veterinária , Hipotálamo/efeitos dos fármacos , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Receptores da Neurocinina-3/metabolismo , Sus scrofa/metabolismo , Acetato de Trembolona/farmacologia
6.
Sci Transl Med ; 13(590)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883274

RESUMO

Ablation of hypothalamic AgRP (Agouti-related protein) neurons is known to lead to fatal anorexia, whereas their activation stimulates voracious feeding and suppresses other motivational states including fear and anxiety. Despite the critical role of AgRP neurons in bidirectionally controlling feeding, there are currently no therapeutics available specifically targeting this circuitry. The melanocortin-3 receptor (MC3R) is expressed in multiple brain regions and exhibits sexual dimorphism of expression in some of those regions in both mice and humans. MC3R deletion produced multiple forms of sexually dimorphic anorexia that resembled aspects of human anorexia nervosa. However, there was no sexual dimorphism in the expression of MC3R in AgRP neurons, 97% of which expressed MC3R. Chemogenetic manipulation of arcuate MC3R neurons and pharmacologic manipulation of MC3R each exerted potent bidirectional regulation over feeding behavior in male and female mice, whereas global ablation of MC3R-expressing cells produced fatal anorexia. Pharmacological effects of MC3R compounds on feeding were dependent on intact AgRP circuitry in the mice. Thus, the dominant effect of MC3R appears to be the regulation of the AgRP circuitry in both male and female mice, with sexually dimorphic sites playing specialized and subordinate roles in feeding behavior. Therefore, MC3R is a potential therapeutic target for disorders characterized by anorexia, as well as a potential target for weight loss therapeutics.


Assuntos
Anorexia , Receptor Tipo 3 de Melanocortina , Animais , Anorexia/tratamento farmacológico , Comportamento Alimentar , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Receptor Tipo 3 de Melanocortina/metabolismo
7.
J Neuroendocrinol ; 32(7): e12877, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572994

RESUMO

Neurokinin B (NKB) is critical for fertility in humans and stimulates gonadotrophin-releasing hormone/luteinising hormone (LH) secretion in several species, including sheep. There is increasing evidence that the actions of NKB in the retrochiasmatic area (RCh) contribute to the induction of the preovulatory LH surge in sheep. In the present study, we determined whether there are sex differences in the response to RCh administration of senktide, an agonist to the NKB receptor (neurokinin receptor-3 [NK3R]), and in NKB and NK3R expression in the RCh of sheep. To normalise endogenous hormone concentrations, animals were gonadectomised and given implants to mimic the pattern of ovarian steroids seen in the oestrous cycle. In females, senktide microimplants in the RCh produced an increase in LH concentrations that lasted for at least 8 hours after the start of treatment, whereas a much shorter increment (approximately 2 hours) was seen in males. We next collected tissue from gonadectomised lambs 18 hours after the insertion of oestradiol implants that produce an LH surge in female, but not male, sheep for immunohistochemical analysis of NKB and NK3R expression. As expected, there were more NKB-containing neurones in the arcuate nucleus of females than males. Interestingly, there was a similar sexual dimorphism in NK3R-containing neurones in the RCh, NKB-containing close contacts onto these RCh NK3R neurones, and overall NKB-positive fibres in this region. These data demonstrate that there are both functional and morphological sex differences in NKB-NK3R signalling in the RCh and raise the possibility that this dimorphism contributes to the sex-dependent ability of oestradiol to induce an LH surge in female sheep.


Assuntos
Hipotálamo Médio/metabolismo , Neurocinina B/metabolismo , Caracteres Sexuais , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Feminino , Kisspeptinas/metabolismo , Masculino , Neurônios/metabolismo , Receptores de Taquicininas/metabolismo , Ovinos , Transdução de Sinais/fisiologia
8.
Endocrinology ; 161(3)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32067028

RESUMO

Elevated and sustained estradiol concentrations cause a gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) surge that is necessary for ovulation. In sheep, several different neural systems have been implicated in this stimulatory action of estradiol and this study focused on somatostatin (SST) neurons in the ventral lateral region of the ventral medial nucleus (vlVMN) which express c-Fos during the surge. First, we determined if increased activity of SST neurons could be related to elevated GnRH secretion by assessing SST synapses onto GnRH neurons and neurons coexpressing kisspeptin, neurokinin B, dynorphin (KNDy). We found that the percentage of preoptic area GnRH neurons that receive SST input increased during the surge compared with other phases of the cycle. However, since SST is generally inhibitory, and pharmacological manipulation of SST signaling did not alter the LH surge in sheep, we hypothesized that nitric oxide (NO) was also produced by these neurons to account for their activation during the surge. In support of this hypothesis we found that (1) the majority of SST cells in the vlVMN (>80%) contained neuronal nitric oxide synthase (nNOS); (2) the expression of c-Fos in dual-labeled SST-nNOS cells, but not in single-labeled cells, increased during the surge compared with other phases of the cycle; and (3) intracerebroventricular (ICV) infusion of the nitric oxide synthase inhibitor, N(G)-nitro-L-arginine methyl ester, completely blocked the estrogen-induced LH surge. These data support the hypothesis that the population of SST-nNOS cells in the vlVMN are a source of NO that is critical for the LH surge, and we propose that they are an important site of estradiol positive feedback in sheep.


Assuntos
Hormônio Luteinizante/sangue , Óxido Nítrico/metabolismo , Ovulação , Ovinos/sangue , Núcleo Hipotalâmico Ventromedial/enzimologia , Animais , Feminino , Óxido Nítrico Sintase Tipo I/metabolismo , Somatostatina/metabolismo
9.
Endocrinology ; 160(12): 2990-3000, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31599937

RESUMO

Recent evidence has implicated neurokinin B (NKB) signaling in the retrochiasmatic area (RCh) of the ewe in the LH surge. To test this hypothesis, we first lesioned NK3R neurons in this area by using a saporin conjugate (NK3-SAP). Three weeks after bilateral injection of NK3-SAP or a blank control (BLK-SAP) into the RCh, an LH surge was induced by using an artificial follicular-phase model in ovariectomized ewes. NK3-SAP lesioned approximately 88% of RCh NK3R-containing neurons and reduced the amplitude of the estrogen-induced LH surge by 58%, an inhibition similar to that seen previously with intracerebroventricular (icv) infusion of a KISS1R antagonist (p271). We next tested the hypothesis that NKB signaling in the RCh acts via kisspeptin by determining whether the combined effects of NK3R-SAP lesions and icv infusion of p271 were additive. Experiment 1 was replicated except that ewes received two sequential artificial follicular phases with infusions of p271 or vehicle using a crossover design. The combination of the two treatments decreased the peak of the LH surge by 59%, which was similar to that seen with NK3-SAP (52%) or p271 (54%) alone. In contrast, p271 infusion delayed the onset and peak of the LH surge in both NK3-SAP- and BLK-SAP-injected ewes. Based on these data, we propose that NKB signaling in the RCh increases kisspeptin levels critical for the full amplitude of the LH surge in the ewe but that kisspeptin release occurs independently of RCh input at the onset of the surge to initiate GnRH secretion.


Assuntos
Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurocinina B/metabolismo , Animais , Feminino , Ovinos
10.
Neuroendocrinology ; 107(3): 218-227, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29929191

RESUMO

BACKGROUND: Neuronal intermediates that communicate estrogen and progesterone feedback to gonadotropin-releasing hormone (GnRH) neurons are essential for modulating reproductive cyclicity. Individually, kisspeptin and nitric oxide (NO) influence GnRH secretion. However, it is possible these 2 neuronal intermediates interact with one another to affect reproductive cyclicity. METHODS: We investigated the neuroanatomical relationship of one isoform of the enzyme that synthesizes NO, neuronal NO synthase (nNOS), to kisspeptin and GnRH in adult female rhesus monkeys and sheep using dual-label immunofluorescence. Additionally, we evaluated if the phase of the reproductive cycle would affect these relationships. RESULTS: Overall, no effect of the stage of cycle was observed for any variable in this study. In the arcuate nucleus (ARC) of sheep, 98.8 ± 3.5% of kisspeptin neurons colocalized with nNOS, and kisspeptin close-contacts were observed onto nNOS neurons. In contrast to ewes, no colocalization was observed between kisspeptin and nNOS in the infundibular ARC of primates, but kisspeptin fibers were apposed to nNOS neurons. In the preoptic area of ewes, 15.0 ± 4.2% of GnRH neurons colocalized with nNOS. In primates, 38.8 ± 10.1% of GnRH neurons in the mediobasal hypothalamus colocalized with nNOS, and GnRH close-contacts were observed onto nNOS neurons in both sheep and primates. CONCLUSION: Although species differences were observed, this work establishes a neuroanatomical framework between nNOS and kisspeptin and nNOS and GnRH in adult female nonhuman primates and sheep.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Hipófise/metabolismo , Animais , Feminino , Macaca mulatta , Área Pré-Óptica/metabolismo , Isoformas de Proteínas/metabolismo , Reprodução/fisiologia , Ovinos
11.
Reproduction ; 156(3): R83-R99, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29880718

RESUMO

Early work in ewes provided a wealth of information on the physiological regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion by internal and external inputs. Identification of the neural systems involved, however, was limited by the lack of information on neural mechanisms underlying generation of GnRH pulses. Over the last decade, considerable evidence supported the hypothesis that a group of neurons in the arcuate nucleus that contain kisspeptin, neurokinin B and dynorphin (KNDy neurons) are responsible for synchronizing secretion of GnRH during each pulse in ewes. In this review, we describe our current understanding of the neural systems mediating the actions of ovarian steroids and three external inputs on GnRH pulsatility in light of the hypothesis that KNDy neurons play a key role in GnRH pulse generation. In breeding season adults, estradiol (E2) and progesterone decrease GnRH pulse amplitude and frequency, respectively, by actions on KNDy neurons, with E2 decreasing kisspeptin and progesterone increasing dynorphin release onto GnRH neurons. In pre-pubertal lambs, E2 inhibits GnRH pulse frequency by decreasing kisspeptin and increasing dynorphin release, actions that wane as the lamb matures to allow increased pulsatile GnRH secretion at puberty. Less is known about mediators of undernutrition and stress, although some evidence implicates kisspeptin and dynorphin, respectively, in the inhibition of GnRH pulse frequency by these factors. During the anoestrus, inhibitory photoperiod acting via melatonin activates A15 dopaminergic neurons that innervate KNDy neurons; E2 increases dopamine release from these neurons to inhibit KNDy neurons and suppress the frequency of kisspeptin and GnRH release.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Homeostase/fisiologia , Ovinos/fisiologia , Animais , Núcleo Arqueado do Hipotálamo/fisiologia , Cruzamento , Dinorfinas/fisiologia , Estradiol/farmacologia , Ciclo Estral , Retroalimentação Fisiológica , Feminino , Kisspeptinas/fisiologia , Hormônio Luteinizante/metabolismo , Neurocinina B/fisiologia , Neurônios/fisiologia , Periodicidade , Progesterona/farmacologia , Estações do Ano , Maturidade Sexual/fisiologia
12.
Endocrinology ; 159(1): 426-438, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29145598

RESUMO

In this study, we investigated whether decreased sensitivity to estradiol negative feedback is associated with reduced estrogen receptor α (ESR1) expression in kisspeptin neurons as ewe lambs approach puberty. Lambs were ovariectomized and received no implant (OVX) or an implant containing estradiol (OVX+E). In the middle arcuate nucleus (mARC), ESR1 messenger RNA (mRNA) was greater in OVX than OVX+E lambs but did not differ elsewhere. Post hoc analysis of luteinizing hormone (LH) secretion from OVX+E lambs revealed three patterns of LH pulsatility: low [1 to 2 pulses per 12 hours; low frequency (LF), n = 3], moderate [6 to 7 pulses per 12 hours; moderate frequency (MF), n = 6], and high [>10 pulses per 12 hours; high frequency (HF), n = 5]. The percentage of kisspeptin neurons containing ESR1 mRNA in the preoptic area did not differ among HF, MF, or LF groups. However, the percentage of kisspeptin neurons containing ESR1 mRNA in the mARC was greater in HF (57%) than in MF (36%) or LF (27%) lambs and did not differ from OVX (50%) lambs. A higher percentage of kisspeptin neurons contained ESR1 protein in all regions of the arcuate nucleus (ARC) in OVX compared with OVX+E lambs. There were no differences in ESR1 protein among the HF, MF, or LF groups in the preoptic area or ARC. Contrary to our hypothesis, increases in LH pulsatility were associated with enhanced ESR1 mRNA abundance in kisspeptin neurons in the ARC, and absence of estradiol increased the percentage of kisspeptin neurons containing ESR1 protein in the ARC. Therefore, changes in the expression of ESR1, particularly in kisspeptin neurons in the ARC, do not explain the pubertal escape from estradiol negative feedback in ewe lambs.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Área Pré-Óptica/metabolismo , Maturidade Sexual , Animais , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Preparações de Ação Retardada/administração & dosagem , Preparações de Ação Retardada/farmacologia , Estradiol/administração & dosagem , Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Retroalimentação Fisiológica , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Imuno-Histoquímica/veterinária , Hibridização In Situ/veterinária , Hormônio Luteinizante/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ovariectomia/veterinária , Área Pré-Óptica/citologia , Área Pré-Óptica/efeitos dos fármacos , RNA Mensageiro/metabolismo , Distribuição Aleatória , Maturidade Sexual/efeitos dos fármacos , Carneiro Doméstico
13.
Endocrinology ; 158(6): 1827-1837, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379327

RESUMO

Two modes of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) secretion are necessary for female fertility: surge and episodic secretion. However, the neural systems that regulate these GnRH secretion patterns are still under investigation. The neuropeptide somatostatin (SST) inhibits episodic LH secretion in humans and sheep, and several lines of evidence suggest SST may regulate secretion during the LH surge. In this study, we examined whether SST alters the LH surge in ewes by administering a SST receptor (SSTR) 2 agonist (octreotide) or antagonist [CYN154806 (CYN)] into the third ventricle during an estrogen-induced LH surge and whether endogenous SST alters episodic LH secretion. Neither octreotide nor CYN altered the amplitude or timing of the LH surge. Administration of CYN to intact ewes during the breeding season or anestrus increased LH secretion and increased c-Fos in a subset GnRH and kisspeptin cells during anestrus. To determine if these stimulatory effects are steroid dependent or independent, we administered CYN to ovariectomized ewes. This SSTR2 antagonist increased LH pulse frequency in ovariectomized ewes during anestrus but not during the breeding season. This study provides evidence that endogenous SST contributes to the control of LH secretion. The results demonstrate that SST, acting through SSTR2, inhibits episodic LH secretion, likely acting in the mediobasal hypothalamus, but action at this receptor does not alter surge secretion. Additionally, these data provide evidence that SST contributes to the steroid-independent suppression of LH pulse frequency during anestrus.


Assuntos
Hormônio Luteinizante/metabolismo , Somatostatina/farmacologia , Anestro/efeitos dos fármacos , Anestro/metabolismo , Animais , Regulação para Baixo/efeitos dos fármacos , Estradiol/farmacologia , Feminino , Hormônio Luteinizante/sangue , Octreotida/farmacologia , Oligopeptídeos/farmacologia , Ovariectomia , Via Secretória/efeitos dos fármacos , Ovinos , Somatostatina/agonistas , Somatostatina/antagonistas & inibidores , Somatostatina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...